organic compounds

32106 measured reflections

 $R_{\rm int} = 0.042$

3565 independent reflections

2399 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,6-Bis(2,4-dimethylbenzylidene)cyclohexanone

Katarzyna A. Solanko and Andrew D. Bond*

University of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense, Denmark Correspondence e-mail: adb@chem.sdu.dk

Received 17 May 2010; accepted 19 May 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.113; data-to-parameter ratio = 15.5.

In the crystal structure of the title compound, $C_{24}H_6O$, the molecule exhibits point symmetry *m* but the mirror plane is not utilized as part of the space-group symmetry. The structure contains face-to-face interactions between the 2,4-dimethylbenzylidene substituents in which the methyl groups lie directly above the centroids of adjacent benzene rings.

Related literature

For related structures, see: Guo *et al.* (2008); Jia *et al.* (1989); Liu (2009); Ompraba *et al.* (2003); Shi *et al.* (2008); Zhang *et al.* (2005); Zhou (2007). For quantification of the molecular point symmetry, see: Pilati & Forni (1998, 2000).

Experimental

Crystal data

$C_{24}H_{26}O$
$M_r = 330.45$
Monoclinic, $P2_1/c$
a = 6.9784 (4) Å
b = 19.2540 (12) Å
c = 14.2829 (10) Å
$\beta = 102.179 (3)^{\circ}$

 $V = 1875.9 (2) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 120 K $0.60 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Bruker-Nonius X8 APEXII CCD

diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2003) $T_{min} = 0.895, T_{max} = 0.986$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 230 parameters $wR(F^2) = 0.113$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.21 \text{ e } \text{ Å}^{-3}$ 3565 reflections $\Delta \rho_{min} = -0.22 \text{ e } \text{ Å}^{-3}$

Table 1

C-H··· π interactions (Å, °).

Cg1 and Cg2 are the centroids of the C21–C26 and C11–C16 rings, respectively.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C17-H17B\cdots Cg1^{i}$	0.98	3.00	3.532 (1)	154
$C17 - H17C \cdot \cdot \cdot Cg1^{ii}$	0.98	2.62	3.469 (1)	111
$C27 - H27B \cdots Cg2^{iii}$	0.98	2.64	3.486 (1)	145
$C27-H27C\cdots Cg2^{iv}$	0.98	2.80	3.510 (1)	130

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful to the Danish Natural Sciences Research Council for funding (grant No. 272-08-0237).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2159).

References

- Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Guo, H.-M., Liu, L. & Jian, F.-F. (2008). Acta Cryst. E64, 01626.
- Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 285–289.
- Liu, D. (2009). Acta Cryst. E65, 0694.
- Ompraba, G., Rafi, Z. A., Yogavel, M., Velmurugan, D., Sekar, K., Karthikeyan, E., Perumal, S., Choudhury, A. R. & Guru Row, T. N. (2003). Cryst. Res. Technol. 38, 822–828.
- Pilati, T. & Forni, A. (1998). J. Appl. Cryst. 31, 503-504.
- Pilati, T. & Forni, A. (2000). J. Appl. Cryst. 33, 417.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, X., Li, S. & Liu, Z. (2008). Acta Cryst. E64, o2199.
- Zhang, L., Wang, S., Sheng, E. & Zhou, S. (2005). Green Chem. 7, 683-686.
- Zhou, L.-Y. (2007). Acta Cryst. E63, 03113.

Acta Cryst. (2010). E66, 01435 [doi:10.1107/81600536810018684]

2,6-Bis(2,4-dimethylbenzylidene)cyclohexanone

K. A. Solanko and A. D. Bond

Comment

We were interested in the crystal structure of 2,6-bis(2,4-dichlorobenzylidene)cyclohexanone (Guo *et al.*, 2008) because we have found that it exhibits a relatively large change in structure on cooling from room temperature to 100 K (Solanko & Bond, unpublished results). We synthesised the analogous tetra-methyl-substituted compound to examine whether it might form a similar structure and display similar behaviour. It does not.

We note that in the publication of Guo *et al.* (2008), the chloro compound is stated to be synthesised by reaction of 2,4-dichlorobenzophenone with cyclohexanone. It seems likely that this should be 2,4-dichlorobenzaldehyde with cyclohexanone, as described here in the Experimental section.

The molecular point symmetry *m* referred to in the Abstract was quantified using the program *SYMMOL* (Pilati & Forni, 1998, 2000): the rms deviation of the molecule from its *m* symmetrised counterpart is 0.055 Å.

Experimental

2,4-Dimethylbenzaldehyde (2.8 ml, 0.02 mol), cyclohexanone (1.0 ml, 0.01 mol) and 30% NaOH(aq) (1 ml) were stirred in ethanol (3 ml) at room temperature for 6 h. The yellow product was filtered and washed using EtOH (3×2 ml). Crystals were obtained by slow evaporation from acetone under ambient conditions.

Refinement

H atoms bound to C atoms were positioned geometrically and allowed to ride during subsequent refinement with C—H = 0.95-0.98 Å, and with $U_{iso}(H) = 1.2$ or $1.5 U_{eq}(C)$. Methyl groups were allowed to rotate about their local threefold axes.

Figures

Fig. 1. Molecular unit showing displacement ellipsoids at 50% probability. H atoms are shown as spheres of arbitrary radius.

Fig. 2. Face-to-face interactions between the 2,4-dimethylbenzylidene substituents, with C(methyl)···centroid interactions highlighted.

2,6-Bis(2,4-dimethylbenzylidene)cyclohexanone

Crystal data

C₂₄H₂₆O $M_r = 330.45$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.9784 (4) Å b = 19.2540 (12) Å c = 14.2829 (10) Å $\beta = 102.179$ (3)° V = 1875.9 (2) Å³ Z = 4

Data collection

Bruker–Nonius X8 APEXII CCD diffractometer	3565 independent reflections
Radiation source: fine-focus sealed tube	2399 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.042$
ω and ϕ scans	$\theta_{\text{max}} = 25.8^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2003)	$h = -8 \rightarrow 8$
$T_{\min} = 0.895, T_{\max} = 0.986$	$k = -19 \rightarrow 23$
32106 measured reflections	$l = -17 \rightarrow 16$

F(000) = 712

 $\theta = 2.6 - 24.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$

Needle, yellow

 $0.60 \times 0.20 \times 0.20 \text{ mm}$

T = 120 K

 $D_{\rm x} = 1.170 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5996 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.113$	H-atom parameters constrained
S = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.0604P)^2 + 0.133P]$ where $P = (F_o^2 + 2F_c^2)/3$
3565 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
230 parameters	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.0853 (2)	0.39396 (5)	0.26683 (9)	0.0545 (4)
C1	0.1796 (2)	0.39689 (7)	0.20350 (11)	0.0297 (4)
C2	0.2281 (2)	0.46589 (7)	0.16524 (10)	0.0243 (3)
C3	0.3539 (2)	0.46722 (7)	0.09156 (10)	0.0250 (4)
H3A	0.4324	0.5105	0.0989	0.030*
H3B	0.2687	0.4673	0.0267	0.030*
C4	0.4907 (2)	0.40496 (7)	0.10168 (11)	0.0274 (4)
H4A	0.5727	0.4074	0.0531	0.033*
H4B	0.5785	0.4051	0.1659	0.033*
C5	0.3697 (2)	0.33903 (7)	0.08813 (10)	0.0246 (4)
H5A	0.2836	0.3391	0.0234	0.030*
H5B	0.4583	0.2985	0.0924	0.030*
C6	0.24585 (19)	0.33209 (7)	0.16204 (10)	0.0226 (3)
C10	0.1637 (2)	0.52272 (7)	0.20284 (10)	0.0243 (4)
H10A	0.0927	0.5149	0.2518	0.029*
C11	0.18876 (19)	0.59566 (7)	0.17793 (10)	0.0205 (3)
C12	0.23238 (18)	0.64565 (7)	0.25081 (10)	0.0207 (3)
C13	0.25309 (18)	0.71416 (7)	0.22573 (10)	0.0215 (3)
H13A	0.2840	0.7477	0.2754	0.026*
C14	0.23096 (18)	0.73622 (7)	0.13169 (10)	0.0227 (3)
C15	0.18354 (19)	0.68668 (7)	0.05996 (10)	0.0225 (3)
H15A	0.1646	0.7003	-0.0053	0.027*
C16	0.16363 (19)	0.61763 (7)	0.08281 (10)	0.0217 (3)
H16A	0.1322	0.5844	0.0328	0.026*
C17	0.2599 (2)	0.62591 (8)	0.35419 (10)	0.0271 (4)
H17A	0.3140	0.6655	0.3944	0.041*
H17B	0.3505	0.5865	0.3677	0.041*
H17C	0.1332	0.6128	0.3682	0.041*
C18	0.2627 (2)	0.81108 (8)	0.11040 (11)	0.0330 (4)
H18A	0.2040	0.8406	0.1527	0.049*
H18B	0.2012	0.8211	0.0435	0.049*
H18C	0.4036	0.8205	0.1210	0.049*
C20	0.19241 (19)	0.27140 (7)	0.19475 (10)	0.0225 (3)
H20A	0.1265	0.2743	0.2464	0.027*
C21	0.22247 (18)	0.20107 (7)	0.16113 (9)	0.0198 (3)
C22	0.25798 (18)	0.14544 (7)	0.22633 (10)	0.0199 (3)
C23	0.27183 (19)	0.07907 (7)	0.19172 (10)	0.0247 (4)
H23A	0.2970	0.0417	0.2361	0.030*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C24	0.2504 (2)	0.06452 (8)	0.09459 (11)	0.0278 (4)
C25	0.2156 (2)	0.11958 (8)	0.03073 (11)	0.0268 (4)
H25A	0.2004	0.1113	-0.0360	0.032*
C26	0.20303 (19)	0.18648 (8)	0.06376 (10)	0.0239 (4)
H26A	0.1805	0.2236	0.0190	0.029*
C27	0.28382 (19)	0.15735 (8)	0.33191 (9)	0.0255 (4)
H27A	0.3023	0.1127	0.3655	0.038*
H27B	0.1671	0.1804	0.3450	0.038*
H27C	0.3990	0.1868	0.3543	0.038*
C28	0.2652 (3)	-0.00880 (8)	0.06076 (13)	0.0441 (5)
H28A	0.1693	-0.0379	0.0835	0.066*
H28B	0.3975	-0.0266	0.0861	0.066*
H28C	0.2384	-0.0097	-0.0094	0.066*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0908 (10)	0.0269 (7)	0.0671 (9)	-0.0005 (6)	0.0645 (8)	0.0014 (6)
C1	0.0368 (9)	0.0268 (10)	0.0313 (9)	-0.0015 (7)	0.0202 (7)	0.0008 (7)
C2	0.0257 (8)	0.0240 (9)	0.0256 (8)	0.0008 (6)	0.0105 (6)	0.0022 (7)
C3	0.0293 (8)	0.0223 (9)	0.0276 (8)	-0.0005 (6)	0.0154 (6)	0.0029 (6)
C4	0.0286 (8)	0.0266 (9)	0.0316 (9)	0.0009 (7)	0.0170 (7)	0.0030 (7)
C5	0.0292 (8)	0.0232 (9)	0.0242 (8)	0.0044 (6)	0.0117 (6)	0.0032 (6)
C6	0.0247 (8)	0.0225 (9)	0.0220 (8)	0.0002 (6)	0.0080 (6)	0.0012 (6)
C10	0.0251 (8)	0.0258 (9)	0.0255 (8)	0.0013 (6)	0.0130 (6)	0.0022 (7)
C11	0.0153 (7)	0.0233 (9)	0.0251 (9)	0.0033 (6)	0.0095 (6)	0.0033 (7)
C12	0.0127 (7)	0.0269 (9)	0.0231 (8)	0.0042 (6)	0.0055 (6)	0.0022 (7)
C13	0.0171 (7)	0.0232 (9)	0.0237 (8)	0.0020 (6)	0.0034 (6)	-0.0026 (6)
C14	0.0171 (7)	0.0229 (8)	0.0283 (9)	0.0038 (6)	0.0056 (6)	0.0047 (7)
C15	0.0203 (7)	0.0262 (9)	0.0217 (8)	0.0058 (6)	0.0062 (6)	0.0059 (7)
C16	0.0195 (7)	0.0249 (9)	0.0218 (8)	0.0027 (6)	0.0070 (6)	-0.0024 (6)
C17	0.0236 (8)	0.0331 (9)	0.0252 (8)	0.0007 (7)	0.0065 (6)	0.0032 (7)
C18	0.0369 (9)	0.0268 (9)	0.0350 (10)	0.0000 (7)	0.0071 (7)	0.0045 (7)
C20	0.0233 (7)	0.0252 (9)	0.0201 (8)	-0.0003 (6)	0.0071 (6)	0.0001 (6)
C21	0.0162 (7)	0.0220 (8)	0.0218 (8)	-0.0019 (6)	0.0051 (6)	-0.0016 (6)
C22	0.0115 (7)	0.0241 (9)	0.0245 (8)	-0.0026 (6)	0.0044 (6)	0.0000 (7)
C23	0.0170 (7)	0.0222 (9)	0.0353 (10)	-0.0009 (6)	0.0060 (6)	0.0031 (7)
C24	0.0190 (7)	0.0254 (9)	0.0401 (10)	-0.0016 (6)	0.0089 (7)	-0.0071 (8)
C25	0.0233 (8)	0.0324 (10)	0.0243 (8)	-0.0026 (7)	0.0044 (6)	-0.0078 (7)
C26	0.0212 (7)	0.0263 (9)	0.0241 (9)	-0.0010 (6)	0.0048 (6)	0.0003 (7)
C27	0.0223 (7)	0.0296 (9)	0.0248 (9)	-0.0024 (7)	0.0049 (6)	0.0038 (7)
C28	0.0447 (10)	0.0295 (10)	0.0590 (12)	-0.0009 (8)	0.0129 (9)	-0.0138 (9)

Geometric parameters (Å, °)

O1—C1	1.2272 (17)	C16—H16A	0.950
C1—C6	1.4954 (19)	C17—H17A	0.980
C1—C2	1.5022 (19)	С17—Н17В	0.980
C2C10	1.3378 (19)	C17—H17C	0.980

C2—C3	1.5062 (19)	C18—H18A	0.980
C3—C4	1.5198 (19)	C18—H18B	0.980
С3—НЗА	0.990	C18—H18C	0.980
С3—Н3В	0.990	C20—C21	1.4665 (19)
C4—C5	1.5140 (19)	C20—H20A	0.950
C4—H4A	0.990	C21—C26	1.3970 (19)
C4—H4B	0.990	C21—C22	1.4067 (19)
C5—C6	1.5049 (19)	C22—C23	1.381 (2)
С5—Н5А	0.990	C22—C27	1.4981 (19)
С5—Н5В	0.990	C23—C24	1.392 (2)
C6—C20	1.3402 (18)	C23—H23A	0.950
C10—C11	1.4683 (19)	C24—C25	1.386 (2)
C10—H10A	0.950	C24—C28	1.503 (2)
C11—C16	1.3983 (19)	C25—C26	1.381 (2)
C11—C12	1.4033 (19)	C25—H25A	0.950
C12—C13	1.3824 (19)	C26—H26A	0.950
C12—C17	1.4973 (19)	C27—H27A	0.980
C13—C14	1.3858 (19)	С27—Н27В	0.980
C13—H13A	0.950	С27—Н27С	0.980
C14—C15	1.3878 (19)	C28—H28A	0.980
C14—C18	1.499 (2)	C28—H28B	0.980
C15—C16	1.3829 (19)	C28—H28C	0.980
C15—H15A	0.950		
O1—C1—C6	120.80 (13)	C11—C16—H16A	119.3
O1—C1—C2	120.39 (13)	С12—С17—Н17А	109.5
C6—C1—C2	118.80 (12)	С12—С17—Н17В	109.5
C10—C2—C1	117.17 (12)	H17A—C17—H17B	109.5
C10—C2—C3	124.17 (12)	С12—С17—Н17С	109.5
C1—C2—C3	118.58 (12)	H17A—C17—H17C	109.5
C2—C3—C4	111.52 (11)	H17B—C17—H17C	109.5
С2—С3—НЗА	109.3	C14—C18—H18A	109.5
С4—С3—Н3А	109.3	C14—C18—H18B	109.5
С2—С3—Н3В	109.3	H18A—C18—H18B	109.5
С4—С3—Н3В	109.3	C14—C18—H18C	109.5
НЗА—СЗ—НЗВ	108.0	H18A—C18—H18C	109.5
C5—C4—C3	109.10 (12)	H18B—C18—H18C	109.5
С5—С4—Н4А	109.9	C6—C20—C21	128.42 (13)
C3—C4—H4A	109.9	C6—C20—H20A	115.8
C5—C4—H4B	109.9	C21—C20—H20A	115.8
C3—C4—H4B	109.9	C26—C21—C22	118.20 (13)
H4A—C4—H4B	108.3	C26—C21—C20	121.40 (12)
C6—C5—C4	111.84 (11)	C22—C21—C20	120.25 (12)
С6—С5—Н5А	109.2	C23—C22—C21	118.92 (13)
C4—C5—H5A	109.2	C23—C22—C27	119.96 (13)
C6—C5—H5B	109.2	C21—C22—C27	121.12 (12)
C4—C5—H5B	109.2	C22—C23—C24	122.82 (13)
H5A—C5—H5B	107.9	С22—С23—Н23А	118.6
C20—C6—C1	117.23 (12)	C24—C23—H23A	118.6
C20—C6—C5	124.42 (12)	C25—C24—C23	117.97 (13)

C1—C6—C5	118.35 (11)	C25—C24—C28	121.41 (14)
C2C10C11	128.14 (13)	C23—C24—C28	120.61 (14)
C2	115.9	C26—C25—C24	120.23 (14)
C11—C10—H10A	115.9	С26—С25—Н25А	119.9
C16—C11—C12	118.44 (12)	C24—C25—H25A	119.9
C16—C11—C10	121.86 (13)	C25—C26—C21	121.85 (13)
C12-C11-C10	119.65 (12)	C25—C26—H26A	119.1
C13—C12—C11	118.72 (12)	С21—С26—Н26А	119.1
C13—C12—C17	119.94 (13)	С22—С27—Н27А	109.5
C11—C12—C17	121.33 (12)	С22—С27—Н27В	109.5
C12—C13—C14	123.18 (13)	H27A—C27—H27B	109.5
С12—С13—Н13А	118.4	С22—С27—Н27С	109.5
C14—C13—H13A	118.4	H27A—C27—H27C	109.5
C13—C14—C15	117.73 (13)	H27B—C27—H27C	109.5
C13—C14—C18	120.01 (13)	C24—C28—H28A	109.5
C15—C14—C18	122.24 (13)	C24—C28—H28B	109.5
C16—C15—C14	120.44 (13)	H28A—C28—H28B	109.5
C16—C15—H15A	119.8	C24—C28—H28C	109.5
C14—C15—H15A	119.8	H28A—C28—H28C	109.5
C15—C16—C11	121.47 (13)	H28B-C28-H28C	109.5
C15—C16—H16A	119.3		
O1—C1—C2—C10	-0.3 (2)	C12—C13—C14—C15	0.74 (19)
C6—C1—C2—C10	178.86 (13)	C12-C13-C14-C18	-177.85 (12)
O1—C1—C2—C3	176.57 (15)	C13-C14-C15-C16	-1.32 (19)
C6—C1—C2—C3	-4.3 (2)	C18—C14—C15—C16	177.24 (13)
C10—C2—C3—C4	148.79 (14)	C14-C15-C16-C11	0.5 (2)
C1—C2—C3—C4	-27.81 (19)	C12-C11-C16-C15	0.91 (19)
C2—C3—C4—C5	60.25 (16)	C10-C11-C16-C15	178.63 (12)
C3—C4—C5—C6	-60.88 (15)	C1-C6-C20-C21	174.29 (13)
O1-C1-C6-C20	2.1 (2)	C5-C6-C20-C21	-6.7 (2)
C2-C1-C6-C20	-177.03 (13)	C6—C20—C21—C26	-39.0 (2)
O1—C1—C6—C5	-176.96 (15)	C6—C20—C21—C22	145.61 (14)
C2—C1—C6—C5	3.9 (2)	C26—C21—C22—C23	-0.09 (18)
C4—C5—C6—C20	-150.24 (14)	C20-C21-C22-C23	175.44 (11)
C4—C5—C6—C1	28.73 (18)	C26—C21—C22—C27	178.95 (12)
C1-C2-C10-C11	-179.33 (13)	C20—C21—C22—C27	-5.52 (19)
C3—C2—C10—C11	4.0 (2)	C21—C22—C23—C24	-0.58 (19)
C2-C10-C11-C16	43.5 (2)	C27—C22—C23—C24	-179.63 (12)
C2-C10-C11-C12	-138.83 (15)	C22—C23—C24—C25	0.6 (2)
C16-C11-C12-C13	-1.47 (18)	C22—C23—C24—C28	-179.46 (13)
C10-C11-C12-C13	-179.23 (12)	C23—C24—C25—C26	0.0 (2)
C16—C11—C12—C17	179.60 (12)	C28—C24—C25—C26	-179.90 (13)
C10-C11-C12-C17	1.84 (19)	C24—C25—C26—C21	-0.7 (2)
C11—C12—C13—C14	0.66 (19)	C22—C21—C26—C25	0.71 (19)
C17—C12—C13—C14	179.61 (12)	C20-C21-C26-C25	-174.76 (12)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C21-C26 and C11-C16 rings, respectively.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C17—H17B···Cg1 ⁱ	0.98	3.00	3.532 (1)	154
C17—H17C···Cg1 ⁱⁱ	0.98	2.62	3.469 (1)	111
C27—H27B····Cg2 ⁱⁱⁱ	0.98	2.64	3.486 (1)	145
C27—H27C····Cg2 ^{iv}	0.98	2.80	3.510(1)	130
Symmetry codes: (i) $-x$, $y+1/2$, $-z+1/2$; (ii) $-x+$	1, y+1/2, -z+1/2; (ii)	i) $-x$, $y-1/2$, $-z+1/2$; (iv) $-x+1$, $y-1/2$, $-z+1$	-1/2.

Fig. 2